Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(16): 11557-11569, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38601708

RESUMO

Here we present the magnetic properties of two cobalt complexes formulated as: [Co(SCN)2(L)2] (1) and (H2L)2[Co(SCN)4]·H2O (2) (L = 1-(2-pyrimidyl)piperazine). The two compounds contain isolated tetrahedral CoII complexes with important intermolecular interactions that lead to the presence of a canted antiferromagnetic order below 11.5 and 10.0 K, with coercive fields at 2 K of 38 and 68 mT, respectively. Theoretical calculations have been used to explain this behaviour. Hirshfeld surface analysis shows the presence of strong intermolecular interactions in both compounds. The crystal geometries were used for geometry optimization using the DFT method. From the topological properties, electrostatic potential maps and molecular orbital analysis, information about the noncovalent interaction and chemical reactivity was obtained.

2.
J Biomol Struct Dyn ; : 1-19, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37318002

RESUMO

Anti-SARS-CoV-2 drugs are urgently needed to prevent the pandemic and for immunization. Their protease inhibitor treatment for COVID-19 has been used in clinical trials. In Calu-3 and THP1 cells, 3CL SARS-CoV-2 Mpro protease is required for viral expression, replication, and the activation of the cytokines IL-1, IL-6, and TNF-. The Mpro structure was chosen for this investigation because of its activity as a chymotrypsin-like enzyme and the presence of a cysteine-containing catalytic domain. Thienopyridine derivatives increase the release of nitric oxide from coronary endothelial cells, which is an important cell signaling molecule with antibacterial activity against bacteria, protozoa, and some viruses. Using DFT calculations, global descriptors are computed from HOMO-LUMO orbitals; the molecular reactivity sites are analyzed from an electrostatic potential map. NLO properties are calculated, and topological analysis is also part of the QTAIM studies. Both compounds 1 and 2 were designed from the precursor molecule pyrimidine and exhibited binding energies (-14.6708 kcal/mol and -16.4521 kcal/mol). The binding mechanisms of molecule 1 towards SARS-COV-2 3CL Mpro exhibited strong hydrogen bonding as well as Vdw interaction. In contrast, derivative 2 was bound to the active site protein's active studied that several residues and positions, including (His41, Cys44, Asp48, Met49, Pro52, Tyr54, Phe140, Leu141, Ser144, His163, Ser144, Cys145, His164, Met165, Glu166, Leu167, Asp187, Gln189, Thr190, and GLn192) are critical for the maintenance of inhibitors inside the active pocket. Molecular docking and 100 ns MD simulation analysis revealed that Both compounds 1 and 2 with higher binding affinity and stability toward the SARS-COV-2 3CL Mpro protein. Binding free energy calculations and other MD parameters support the finding.Communicated by Ramaswamy H. Sarma.

3.
J King Saud Univ Sci ; 35(4): 102628, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36908997

RESUMO

In the present work, we describe the extraction of a natural product namely 1,4,9,9-tetramethyloctahydro-4,7-(epoxymethano)azulen-5(1H)-one, and its structure was confirmed by single crystal X-ray diffraction analysis. The conformations of the 5-, 6-, and 7-membered rings in the title compound, C15H24O2, have been probed by a Cremer-Pople puckering analysis. C-H···O hydrogen bonds generate chains in the crystal that stretch along the c-axis direction. The Hirshfeld surface analysis method was used to stabilize the crystal packing of the natural compound. Accompanied by experimental studies, quantum chemical calculations were also performed to compare the structural elucidation and the results of these geometrical parameters exhibited excellent agreement. The compound was also docked with several drug targets of the SARS-CoV-2 virus and found to show the best binding with the main protease enzyme, having a binding energy of -12.31 kcal/mol and interacting with His41 and Cys145 residues. The dynamic stability deciphered the complex to be stable with an average RMSD of 3.8 Å. The compound dynamics with the enzyme showed the compound conformation to be highly stable. The intermolecular binding free energy determined the compound-main protease enzyme to show high interaction energy of < 40 kcal/mol. Together, these studies demonstrate the compound to be a lead structure against SARS-CoV-2.

4.
J Biomol Struct Dyn ; 41(11): 5277-5290, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35665631

RESUMO

Infection by the human immunodeficiency virus still represents a continuous serious concern and a global threat to human health. Due to the appearance of multi-resistant virus strains and the serious adverse side effects of the antiretroviral therapy administered, there is an urgent need for the development of new treatment agents that are more active, less toxic, and with increased tolerability to mutations. Quinoxaline derivatives are a class of heterocyclic compounds with a wide range of organic and remedial applications. In addition, they are known to significantly inhibit HIV reverse transcriptase (RT) and HIV replication in cell cultures. For these reasons, we are investigating the synthesis and computational studies of quinoxaline derivatives with a focus on their effects on the HIV RT enzyme, and we present here the structure of one such molecule, methyl 2-[(2E)-3-oxo-1,2,3,4-tetrahydroquinoalin-2-ylidene] acetate, which was confirmed by X-ray diffraction studies. In the crystal, N-H···O and C-H···O hydrogen bonds form ribbons whose mean planes are inclined to (111) by 25.69(8)°. The ribbons are formed into stacks by C-H···π(ring) interactions and π-stacking interactions between carbonyl groups. The Hirshfeld surface map allows us to understand the nature of interactions in the contribution to crystal packing. A density functional theory (DFT) calculation was performed to optimize the geometrical parameters and then they were compared with the solid-state phase. The molecular electrostatic potential map displays reactive sites on the surface, which are responsible for intermolecular interaction in the chemical species. Computational molecular docking, in addition to molecular dynamics simulations and MMGB/PBSA binding energy techniques, was used to assess the affinity of the molecule for the HIV reverse transcriptase enzyme. The new quinoxaline derivative is more powerful in terms of binding affinity and binding conformation stability with the HIV reverse transcriptase enzyme, which suggests the molecule is a good candidate for further biological optimization.Communicated by Ramaswamy H. Sarma.


Assuntos
Fármacos Anti-HIV , Humanos , Fármacos Anti-HIV/química , Inibidores da Transcriptase Reversa/farmacologia , Transcriptase Reversa do HIV , Simulação de Acoplamento Molecular , Quinoxalinas/química , Quinoxalinas/farmacologia
5.
Appl Biochem Biotechnol ; 195(9): 5338-5354, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35195835

RESUMO

In the present paper, several computational binding analyses were performed on ethyl 3,3,5,5-tetracyano-2-hydroxy-2-methyl-4,6-diphenylcyclohexane-1-carboxylate which was newly synthesized by three-component condensation of benzaldehyde with ethyl acetoacetate and malononitrile in the presence of trichloroacetic acid, and the structure was finally proved by X-ray analysis. The visualization of molecular interaction was carried out through Hirshfeld surface analysis and ESP. The atomic charges, HOMO, LUMO, and electrostatic potential were also studied to explore the insight of the molecule deeper, and then, natural bonding orbitals (NBO) and non-linear optical properties (NLO) were calculated to reveal the interactions that happen to be between the filled and vacant orbitals. Afterwards, molecular docking studies predicted the compound binding mode fits in the minor groove of DNA and remained interacts via stable bonding as validated by molecular dynamics simulations. The binding energy estimation also affirmed domination van der Waals and electrostatic energies. Lastly, the compound was found as good drug-like molecule and had good pharmacokinetic profile with exception of toxic moieties.


Assuntos
Cicloexanos , DNA , Cicloexanos/síntese química , Cicloexanos/química , Cicloexanos/farmacocinética , DNA/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes , Eletricidade Estática , Termodinâmica , Ácido Tricloroacético/química
6.
J Fish Biol ; 101(5): 1189-1198, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36065134

RESUMO

Sicyopterus garra Hora, 1925 from the insular streams of South Andaman Islands was synonymized with Sicyopterus microcephalus described from Java, South East Asia and has retained this taxonomic status since then. Recent collections of Sicyopterus from the type locality of S. garra and the examination of syntypes of this species revealed significant morphological and genetic differences from S. microcephalus and the other Sicyopterus species with papillae on upper lip. S. garra is thus a valid species and not a synonym of S. microcephalus. S. garra differs from S. microcephalus in having fewer lateral scales 53-59 vs. 57-68, fewer zigzag series (12-14 vs. 13-16), a longer caudal peduncle length (16-21 vs. 13-17), and by having a high percentage of divergence in COI gene (5.5%-5.8%).


Assuntos
Cyprinidae , Perciformes , Animais , Cyprinidae/anatomia & histologia , Perciformes/anatomia & histologia , Índia , Ilhas
7.
Sci Rep ; 12(1): 15828, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138056

RESUMO

The cobalt (II) complexes have been synthesized from the reaction of the cationic entities (3,4-dimethylaniline (1) and histamine (2)) with metallic salt CoCl2⋅6H2O and thiocyanate ion (SCN-) as a ligand in H2O/ethanolic solution and processing by the evaporation crystal growth method at room temperature to get crystals. The synthesized complex has been fully characterized by single-crystal X-ray diffraction. UV-Visible, FTIR spectroscopy, TGA analysis, and DFT circulations were also performed. The crystal structural analysis reveals that the solid (1) {[Co(SCN)4] (C8H12N)3}·Cl crystallizes in the monoclinic system with the space group P21/n and the solid (2) {[Co(SCN)4](C5H11N3)2}·2Cl crystallizes in the monoclinic space group P21/m. Metal cations are joined into corrugated chains parallel to the b-axis direction in (1) and (2) by four thiocyanate anions. The crystal structures of (1) and (2) were calculated using XRPD data, indicating that they are closely connected to the DRX mono-crystal results. Different interactions pack the system into a ring formed by N-H⋯Cl and N-H⋯S hydrogen bonds. C-H⋯π and the π⋯π stacking of anilinuim ring for (1) and N-H⋯S intermolecular interactions for (1) and (2) increase the crystals' robustness. Hirshfeld surface analysis cum 2D fingerprint plots visualize the main intermolecular interactions with their contributions in the solid-state phase. The molecular geometries of both complexes obtained from the crystal structure were used for quantum chemical calculation. Here, frontier orbital analysis and electrostatic potential illustrate the chemical reactivities of metal-organic complexes. QTAIM and NCI analysis reveal the strength of interactions at the electronic level.


Assuntos
Cobalto , Complexos de Coordenação , Antioxidantes , Cátions , Cobalto/química , Histamina , Ligantes , Modelos Moleculares , Teoria Quântica , Tiocianatos/química
8.
Front Microbiol ; 13: 832109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308379

RESUMO

An exopolysaccharide (EPS) was purified from the probiotic bacterium Bacillus albus DM-15, isolated from the Indian Ayurvedic traditional medicine Dasamoolarishta. Gas chromatography-mass spectrophotometry and nuclear magnetic resonance (NMR) analyses revealed the heteropolymeric nature of the purified EPS with monosaccharide units of glucose, galactose, xylose, and rhamnose. Size-exclusion chromatography had shown the molecular weight of the purified EPS as around 240 kDa. X-ray powder diffraction analysis confirmed the non-crystalline amorphous nature of the EPS. Furthermore, the purified EPS showed the maximum flocculation activity (72.80%) with kaolin clay and emulsification activity (67.04%) with xylene. In addition, the EPS exhibits significant antioxidant activities on DPPH (58.17 ± 0.054%), ABTS (70.47 ± 0.854%) and nitric oxide (58.92 ± 0.744%) radicals in a concentration-dependent way. Moreover, the EPS showed promising cytotoxic activity (20 ± 0.97 µg mL-1) against the lung carcinoma cells (A549), and subsequent cellular staining revealed apoptotic necrotic characters in damaged A549 cells. The EPS purified from the probiotic strain B. albus DM-15 can be further studied and exploited as a potential carbohydrate polymer in food, cosmetic, pharmaceutical, and biomedical applications.

9.
J Inorg Biochem ; 231: 111791, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35338940

RESUMO

New complex compounds (I) - (IV) were synthesized by the reaction of 1-(2-fluorofluorophenyl) -1,4-dihydro-5H-tetrazole-5-thione (HL1), 1-(2-methylphenyl)-1,4-dihydro-5H-tetrazole-5-thione (HL2) and 1-(2-chlorochlorophenyl)-1,4-dihydro-5H-tetrazole-5-thione (HL3) with cadmium chloride. By X-ray diffraction analysis, molecular and crystal structures of complexes (I), (II), (III) and (IV) are determined. (CIF files CCDC № 2,003,797 (I), 1,993,454 (II), 2,151,359 (III), 2,098,997 (IV)). Hirshfeld surface analysis, frontier orbital analysis, atomic charges, electrostatic potential, nonlinear optical properties, and natural bond analysis of all three­cadmium metal-organic complexes were discussed. A molecular docking study was used to investigate compounds' binding and interactions with DNA molecules, which predicted compound I as the best binder at the DNA minor groove and demonstrated closed distance interactions. In a long run of molecular dynamics simulations, the compound I complex was also depicted with good dynamics.


Assuntos
Cloreto de Cádmio , Tionas , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Tetrazóis , Tionas/química
10.
J Biomol Struct Dyn ; 40(23): 12880-12894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34637680

RESUMO

Alzheimer's disease (AD) is the grievous neurodegenerative disorder. Reportedly, many enzymes are responsible for this disease, in which notably, acetylcholinesterase (AChE) and ß-secretase (BACE1) are largely involved for AD. An experimental study reports that silibinin molecule inhibits both AChE and BACE1 enzymes. Present study aims to understand the dual binding mechanism of silibinin in the active site of AChE and BACE1 from the intermolecular interactions, conformational flexibility, charge density distribution, binding energy and the stability of molecule. To obtain the above information, the molecular docking, molecular dynamics (MD) and QTAIM (quantum theory of atoms in molecules) calculations have been performed. The molecular docking reveals that silibinin molecule is forming strong and weak intermolecular interactions with the catalytic site of both enzymes. The QTAIM analysis for the binding pockets of both complexes shows the charge density distribution of intermolecular interactions. The electrostatic potential map displays the electronegative/positive regions at the interaction zone of silibinin with AChE and BACE1 complexes. The MD simulation confirms that the silibinin molecule is stable in the active site of AChE and BACE1 enzymes. The binding free energies of silibinin with both enzymes are more favorable to have the interactions.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Silibina , Acetilcolinesterase/química , Secretases da Proteína Precursora do Amiloide/química , Ligação Proteica , Ácido Aspártico Endopeptidases/química , Doença de Alzheimer/tratamento farmacológico , Domínio Catalítico
11.
Acta Crystallogr C Struct Chem ; 77(Pt 12): 790-799, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864722

RESUMO

The intermolecular interactions and salt formation of acridine with 4-aminosalicylic acid, 5-chlorosalicylic acid and hippuric acid were investigated. The salts obtained were acridin-1-ium 4-aminosalicylate (4-amino-2-hydroxybenzoate), C13H10N+·C7H6NO3- (I), acridin-1-ium 5-chlorosalicylate (5-chloro-2-hydroxybenzoate), C13H10N+·C7H4ClO3- (II), and acridin-1-ium hippurate (2-benzamidoacetate) monohydrate, C13H10N+·C9H8NO3-·H2O (III). Acridine is involved in strong intermolecular interactions with the hydroxy group of the three acids, enabling it to form supramolecular assemblies. Hirshfeld surfaces, fingerprint plots and enrichment ratios were generated and investigated, and the intermolecular interactions were analyzed, revealing their quantitative contributions in the crystal packing of salts I, II and III. A quantum theory of atoms in molecules (QTAIM) analysis shows the charge-density distribution of the intermolecular interactions. The isosurfaces of the noncovalent interactions were studied, which allows visualization of where the hydrogen-bonding and dispersion interactions contribute within the crystal.

12.
Viruses ; 13(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34372583

RESUMO

The present study was intended to screen the wild crustaceans for co-infection with Infectious Hypodermal and Hematopoietic Necrosis Virus (IHHNV) and White Spot Syndrome Virus (WSSV) in Andaman and Nicobar Archipelago, India. We screened a total of 607 shrimp and 110 crab samples using a specific polymerase chain reaction, and out of them, 82 shrimps (13.5%) and 5 (4.5%) crabs were found positive for co-infection of IHHNV and WSSV. A higher rate of co-infection was observed in Penaeus monodon and Scylla serrata than other shrimp and crab species. The nucleotide sequences of IHHNV and WSSV obtained from crab in this present study exhibited very high sequence identity with their counterparts retrieved from various countries. Histopathological analysis of the infected shrimp gill sections further confirmed the eosinophilic intra-nuclear cowdry type A inclusion bodies and basophilic intra-nuclear inclusion bodies characteristics of IHHNV and WSSV infections, respectively. The present study serves as the first report on co-infection of WSSV and IHHNV in Andaman and Nicobar Archipelago, India and accentuates the critical need for continuous monitoring of wild crustaceans and appropriate biosecurity measures for brackishwater aquaculture.


Assuntos
Braquiúros/virologia , Coinfecção/epidemiologia , Penaeidae/virologia , Animais , Animais Selvagens/virologia , Aquicultura/métodos , Densovirinae/genética , Densovirinae/patogenicidade , Índia , Reação em Cadeia da Polimerase/métodos , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/patogenicidade
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 259: 119856, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979725

RESUMO

The interactions between selected molecules (piperine, tacrine, curcumin and silibinin) and proteins (acetylcholinesterase and bovine serum albumin) were investigated by Fluorescence spectroscopy, molecular docking, molecular dynamics, free energy calculation and non-covalent interaction analysis. These binding characteristics are of huge interest for understanding pharmacokinetic mechanism of the target molecules. The steady-state emission spectrum results showed that presence of static quenching mode for piperine, tacrine, curcumin, silibinin molecules with BSA and AChE complexes separately and this excitation-emission matrix analysis suggest that formation of ground-state complex between piperine, tacrine, curcumin, silibinin drugs and both BSA, AChE protein molecules. And, the binding model from molecular docking analysis of both BSA and AChE with these molecules clearly displayed non-covalent interactions (hydrogen bonding and hydrophobic interactions) which played a significant role in the binding mechanism. Further, the protein-ligand complexes are subjected to molecular dynamics and binding free energy calculation to confirm the stability of the molecule in the active site of BSA and AChE. The NCI (non-covalent interaction) approach supports to visualize the iso-surface of the reduced density gradient of such interactions between protein and ligands.


Assuntos
Acetilcolinesterase , Soroalbumina Bovina , Sítios de Ligação , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Termodinâmica
14.
Saudi J Biol Sci ; 27(11): 3018-3024, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33100861

RESUMO

The biosynthesized Ag NPs was synthesized by using marine mangrove plant extract Avicennia marina. The synthesized Ag NPs was confirmed by various physiochemical characterization including UV-spectrometer and XRD analysis. In addition, the shape and of the synthesized Ag NPs was morphologically identified by SEM initially and TEM finally. After confirmation, the anti-cancer property of synthesized Ag NPs was confirmed at 50 µg/mL concentration against A549 lung cancer cells by MTT assay. Further, the ability to stimulate the ROS generation and mitochondrial membrane at the IC50 concentration of Ag NPs was confirmed by fluorescence microscopy using DCFH-DA and rhodamine 123 dyes respectively. Finally, the result was concluded that the synthesized Ag NPs has improved anti-cancer activity against A549 cells at lowest concentration.

15.
Int J Biol Macromol ; 164: 3901-3908, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32889000

RESUMO

In recent years, an enormous number of naturally occurring biological macromolecules has been reported worldwide due to its antibacterial and anticancerous potential. Among them, in this study, the copper containing respiratory protein namely haemocyanin (HC) was isolated from the haemolymph of mud crab Scylla serrata. The isolated metalloprotein HC was purified using Sepharose column by gel filtration chromatography. The purified HC was separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and molecular weight of the protein was identified as 95 kDa. Fourier transform infrared spectrophotometer (FT-IR) and nuclear magnetic resonance (1H NMR) spectral data revealed the presence of amino acid constituents. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis based mass ion search exposed that the purified protein was HC. HC exhibited an in vitro bacteriostatic effects against the bacterial pathogens and also elevated ROS levels in the treated samples. The half maximal (50%) inhibitory concentration (IC50) of HC was found to be 80 µg/mL against lung cancer cells (A549). Our study collectively addressed the potential antibacterial and anti-cancerous activity of HC. The results obtained from this study suggest that HC can be used for therapeutical application in the near future.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Braquiúros/química , Hemolinfa/química , Metaloproteínas/isolamento & purificação , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Cromatografia Líquida de Alta Pressão , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral , Difração de Raios X
16.
Int J Biol Macromol ; 164: 4010-4021, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853609

RESUMO

In the present study, the chemical composition of Morinda citrifolia essential oils was determined by gas chromatography-mass spectrometry and was found to contain several anti-cancer compounds including L-scopoletin, nordamnacanthal, ß-morindone, α-copaene, 9-H-pyrido[3,4-b]indole, ß-thujene and terpinolene. The physico-chemical characterization of chitosan, chitosan nanoparticles and Morinda citrifolia essential oils loaded chitosan nanoparticles combination was carried out by Fourier transform infrared spectroscopy, powder X-ray diffraction and dynamic light scattering coupled with zeta potential. The morphological observation obtained by scanning electron microscopy and transmission electron microscopy provided clear indication that the immobile chitosan polymer formed a coating onto the Morinda citrifolia essential oils surface. The cytotoxic effect of Morinda citrifolia essential oils loaded chitosan nanoparticles against A549 cells were investigated, resulting in 54% inhibition at 40 µg/ml-1. Information about in vitro morphological modification, nucleus damages, ROS generation and cell cycle arrest was obtained by fluorescence microscopy and flow cytometer analysis. The toxicity evaluation against human red blood cells suggested that the Morinda citrifolia essential oils loaded chitosan nanoparticles possess minimum cytotoxicity. Altogether, the present study suggests that these Morinda citrifolia essential oils loaded chitosan nanoparticles are valuable biomaterials owing to their ability to fight against A549 cancer cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Quitosana/química , Morinda/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Células A549 , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fenômenos Químicos , Citometria de Fluxo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Neoplasias Pulmonares , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral , Difração de Raios X
17.
J Biomol Struct Dyn ; 38(7): 1903-1917, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31099307

RESUMO

The most common brain disorder of late life is Alzheimer's disease (AD), which is highly complicating dementia. There are several drug targets which are reported to control the severe level of AD; notably, acetylcholinesterase, ß-Secretase and glycogen synthase kinase enzymes are approached as a good drug targets for AD. Hence, the present study mainly focused to discover newly synthesized molecule (7-propyl-6H-pyrano[3,2-c:5,6-c']dichromene-6,8(7H)-dione) as a potential triplet acting drug for above said enzymes through the analysis of X-ray crystallography, molecular docking, molecular dynamics and quantum chemical calculation. The target drug molecule was crystallized in the monoclinic crystal structure with P21/n space group. The structure was solved by SHELXS and refined by SHELXL. The crystal packing is stabilized by C - H···O type of interactions. Further, the induced fit docking shows that the molecule has high docking score, glide energy, favorable hydrogen bonding and hydrophobic interactions on the protein targets. The molecular dynamics simulation was performed to understand the stability of the molecule in the presence of active site environment. Finally, quantum chemical calculation has been carried out for the molecule in gas phase and for the corresponding molecule lifted from the active site region. The structural comparison between gas phase and active site helps to understand the conformational modification of the molecule in the active site. Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Simulação de Dinâmica Molecular , Doença de Alzheimer/tratamento farmacológico , Cristalografia por Raios X , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica
18.
J Biomol Struct Dyn ; 38(4): 957-974, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30963817

RESUMO

Alzheimer's disease (AD) is the most devastating neurodegenerative disorder which alters the memory of a person. It is a common form of senile dementia characterized by memory loss, personal skills and disorientation. The current treatment for AD is fully focused to control the disease based on symptoms. Based on the tau hypothesis, GSK3ß is an interesting drug target, this also alters the course of AD. The recent experimental report outlines that the indirubin derivatives inhibit GSK3ß, however, the detailed binding mechanism of indrubin-GSK3ß is not yet known. To understand the exact binding mechanism of indirubin derivatives in the active site of GSK3ß, the molecular conformation, intermolecular interactions, charge density distribution, electrostatic properties and the stability were determined. To accomplish this, indirubin derivatives were screened via molecular docking and further molecular dynamics (MD) and QM/MM-based charge density analysis have been performed. The molecular docking was carried out to investigate the binding affinity and the intermolecular interactions of indirubin molecule in the active site of GSK3ß. QM/MM based charge density (CD) analysis has been carried out to emphasize the nature of chemical bonding (topology of electron density) and the electrostatic properties of ligand in the binding pocket. We have performed the CD analysis of intermolecular interaction between indirubin-3-monoxime and the active site amino acids of GSK3ß. Further, the stability of the molecule has been confirmed from the MD simulation and the binding free energy of the indirubin-3-monoxime-GSK3ß complex has been determined using MM/PBSA method to validate the binding affinity of indirubin-3-monoxime.Communicated by Ramaswamy H. Sarma.


Assuntos
Glicogênio Sintase Quinase 3 beta/química , Indóis/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oximas/química , Algoritmos , Sítios de Ligação , Domínio Catalítico , Elétrons , Estabilidade Enzimática , Glicogênio Sintase Quinase 3 beta/metabolismo , Ligação de Hidrogênio , Indóis/metabolismo , Modelos Teóricos , Estrutura Molecular , Oximas/metabolismo , Ligação Proteica , Eletricidade Estática
19.
J Mol Graph Model ; 92: 280-295, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425905

RESUMO

Piperine is a pungent alkaloid, largely present in the skin of pepper. It is the most active component of pepper and being used as a medicine in many Asian countries. The effect of piperine on memory impairment and neurodegeneration in Alzheimer's disease model has been investigated. In the present study, we aim to investigate the effect of piperine molecule in different environments (crystal and active site of proteins) from crystallography, molecular docking, QM/MM based charge density analysis and molecular dynamic simulation. The crystal structure of piperine has been used to determine the topological electron density of intermolecular interactions. The O-atoms of piperine is forming C-H⋅⋅⋅O interactions with the neighboring molecules in the crystal, these interactions also confirmed from the Hirshfeld surface. Further, to understand the nature of interactions and the conformational flexibility of piperine in the active site of recombinant human acetylcholinesterase (rhAChE), molecular docking analysis has been performed. The selected docked complex suggests favorable hydrogen bonding and hydrophobic interactions with rhAChE enzyme; notably, the O3 atom of piperine molecule forms strong hydrogen bonding interaction with Glu202 at 1.8 Å. To determine the charge density distribution and the electrostatic properties of piperine molecule in the active site of rhAChE, the piperine-rhAChE complex was minimized at QM/MM energy level; in which, the binding pocket with piperine was considered as QM region. The charge density analysis of piperine and the interacting amino acid groups have been carried out. The topological analysis of O3⋯H-O/Glu202 hydrogen bonding interaction exhibits strong interactions and the electron density ρcp(r): 0.242 eÅ-3 and the Laplacian ∇2ρcp(r): 3.176 eÅ-5 respectively. These results were compared with the corresponding molecule present in the crystal and gas phase environments of piperine. The comparison of active site structure with the corresponding crystal phase and gas phase structures reveal that piperine exhibits large conformational modification in the active site. The molecular dynamics simulation and binding free energy calculations were performed, this gives the stability, binding affinity of the molecule in the active site of rhAChE. The O3⋯H-O/Glu202 interaction shows the high stability (89.2%), this was confirmed from the stability of hydrogen bond analysis. The binding free energy was used to measure the rate of inhibition of enzyme in the presence of ligand molecule. The comparative study allows to understand the nature of piperine molecule in the gas and crystal phases, and amino acids environment.


Assuntos
Alcaloides/química , Benzodioxóis/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Acetilcolinesterase/química , Algoritmos , Domínio Catalítico , Cristalografia , Humanos , Ligação de Hidrogênio , Conformação Molecular , Estrutura Molecular , Ligação Proteica
20.
J Biomol Struct Dyn ; 37(9): 2339-2354, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30044206

RESUMO

Alzheimer disease (AD) is a cruel neurodegenerative disorder caused by the deposition of amyloid ß (Aß) peptide inside the brain. The ß-secretase (beta amyloid precursor protein (APP) cleaving enzyme 1, BACE1) is one of the enzymes involved in the cleavage of APP that leads to the Aß formation and it is the primary target for the treatment of AD. Recent report outlines that verubecestat molecule strongly inhibits BACE1; however, its structure, binding mechanism and the stability in the active site of BACE1 are not yet known. The present study aims to determine the structure, binding affinity and the stability of verubecestat molecule in the active site of BACE1 from the molecular docking, quantum mechanics/molecular mechanics (QM/MM)-based charge density analysis and molecular dynamics simulation. Verubecestat molecule was docked at BACE1; it shows high binding affinity towards BACE1. Further, the conformational geometry and the intermolecular interactions of verubecestat in the active site of BACE1 were determined. The molecule forms strong interaction with the neighboring amino acids in the active site of BACE1. The onsite QM/MM-based charge density analysis reveals the nature of charge density distribution and the topological properties of intermolecular interactions of verubecestat molecule in the active site of BACE1. The calculated electrostatic potential (ESP) of verubecestat in the active site of BACE1 displays high negative and positive ESP regions of the molecule. This onsite QM/MM analysis is more relevant to the physiological situation. The molecular dynamics simulation has been performed, which confirms the high stability and compactness of verubecestat in the active site of BACE1. The MM-generalized Born surface area and MM-Poisson Boltzmann surface area free energy calculations of verubecestat-BACE1 also confirm the high binding affinity of verubecestat. Communicated by Ramaswamy H. Sarma.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Óxidos S-Cíclicos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Teoria Quântica , Tiadiazinas/química , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Domínio Catalítico , Óxidos S-Cíclicos/metabolismo , Estabilidade de Medicamentos , Humanos , Ligação Proteica , Eletricidade Estática , Termodinâmica , Tiadiazinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA